Advertisement

Acetylation mediates Cx43 reduction caused by electrical stimulation

Published:August 08, 2015DOI:https://doi.org/10.1016/j.yjmcc.2015.08.001

      Highlights

      • Electrical activity modulates the acetylation/deacetylation balance of excitable cells.
      • Electrical activity modulates the acetylation status of Cx43.
      • Electrical activity modulates myocardial cell–cell communication through Cx43 acetylation.

      Abstract

      Communication between cardiomyocytes depends upon gap junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylase (HAT) and deacetylase (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell–cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 h significantly reduced connexin43 (Cx43) expression and cell–cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell–cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation.
      In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43.

      Abbreviations:

      GJ (gap junctions), Cx43 (connexin43), HAT (histone acetylase), HDAC (histone deacetylase), CM (cardiomyocyte), NRCM (neonatal rat cardiomyocyte), hCStC (human cardiac stromal cell)

      Keywords

      To read this article in full you will need to make a payment

      References

        • McCaig C.D.
        • Zhao M.
        Physiological electrical fields modify cell behaviour.
        BioEssays. 1997; 19: 819-826
        • Guo A.
        • Song B.
        • Reid B.
        • Gu Y.
        • Forrester J.V.
        • Jahoda C.A.
        • et al.
        Effects of physiological electric fields on migration of human dermal fibroblasts.
        J. Investig. Dermatol. 2010; 130: 2320-2327
        • Wang E.T.
        • Zhao M.
        Regulation of tissue repair and regeneration by electric fields.
        Chin. J. Traumatol. 2010; 13: 55-61
        • Robinson K.R.
        • Messerli M.A.
        Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion.
        BioEssays. 2003; 25: 759-766
        • Wang Z.
        • Zang C.
        • Cui K.
        • Schones D.E.
        • Barski A.
        • Peng W.
        • et al.
        Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
        Cell. 2009; 138: 1019-1031
        • Riccio A.
        Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways.
        Nat. Neurosci. 2010; 13: 1330-1337
        • Hardingham G.E.
        • Chawla S.
        • Cruzalegui F.H.
        • Bading H.
        Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels.
        Neuron. 1999; 22: 789-798
        • Peserico A.
        • Simone C.
        Physical and functional HAT/HDAC interplay regulates protein acetylation balance.
        J. Biomed. Biotechnol. 2011; 2011: 371832
        • Chawla S.
        • Vanhoutte P.
        • Arnold F.J.
        • Huang C.L.
        • Bading H.
        Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5.
        J. Neurochem. 2003; 85: 151-159
        • Xia Y.
        • McMillin J.B.
        • Lewis A.
        • Moore M.
        • Zhu W.G.
        • Williams R.S.
        • et al.
        Electrical stimulation of neonatal cardiac myocytes activates the NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate synthetase 1 gene.
        J. Biol. Chem. 2000; 275: 1855-1863
        • Jiang Q.
        • Ni B.
        • Shi J.
        • Han Z.
        • Qi R.
        • Xu W.
        • et al.
        Down-regulation of ATBF1 activates STAT3 signaling via PIAS3 in pacing-induced HL-1 atrial myocytes.
        Biochem. Biophys. Res. Commun. 2014; 449: 278-283
        • McDonough P.M.
        • Glembotski C.C.
        Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction.
        J. Biol. Chem. 1992; 267: 11665-11668
        • Ivester C.T.
        • Kent R.L.
        • Tagawa H.
        • Tsutsui H.
        • Imamura T.
        • Cooper Gt
        • et al.
        Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes.
        Am. J. Physiol. 1993; 265: H666-H674
        • Lin X.
        • Gemel J.
        • Glass A.
        • Zemlin C.W.
        • Beyer E.C.
        • Veenstra R.D.
        Connexin40 and connexin43 determine gating properties of atrial gap junction channels.
        J. Mol. Cell. Cardiol. 2010; 48: 238-245
        • Molica F.
        • Meens M.J.
        • Morel S.
        • Kwak B.R.
        Mutations in cardiovascular connexin genes.
        Biol. Cell. 2014; 106: 269-293
        • Zhang D.
        • Wu C.T.
        • Qi X.
        • Meijering R.A.
        • Hoogstra-Berends F.
        • Tadevosyan A.
        • et al.
        Activation of histone deacetylase-6 induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation.
        Circulation. 2014; 129: 346-358
        • Nakashima T.
        • Ohkusa T.
        • Okamoto Y.
        • Yoshida M.
        • Lee J.K.
        • Mizukami Y.
        • et al.
        Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes.
        Am. J. Physiol. Heart Circ. Physiol. 2014; 306: H1324-H1333
        • Gupta M.P.
        • Samant S.A.
        • Smith S.H.
        • Shroff S.G.
        HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity.
        J. Biol. Chem. 2008; 283: 10135-10146
        • Colussi C.
        • Rosati J.
        • Straino S.
        • Spallotta F.
        • Berni R.
        • Stilli D.
        • et al.
        Nepsilon-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 2795-2800
        • Claycomb W.C.
        • Lanson Jr., N.A
        • Stallworth B.S.
        • Egeland D.B.
        • Delcarpio J.B.
        • Bahinski A.
        • et al.
        HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 2979-2984
        • Berger H.J.
        • Prasad S.K.
        • Davidoff A.J.
        • Pimental D.
        • Ellingsen O.
        • Marsh J.D.
        • et al.
        Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture.
        Am. J. Physiol. 1994; 266: H341-H349
        • Lampe P.D.
        • Cooper C.D.
        • King T.J.
        • Burt J.M.
        Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart.
        J. Cell Sci. 2006; 119: 3435-3442
        • Mitacchione G.
        • Powers J.C.
        • Grifoni G.
        • Woitek F.
        • Lam A.
        • Ly L.
        • et al.
        The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart.
        Circ. Heart Fail. 2014; 7: 643-651
        • Brundel B.J.
        • Kampinga H.H.
        • Henning R.H.
        Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation.
        Cardiovasc. Res. 2004; 62: 521-528
        • Xu Q.
        • Lin X.
        • Andrews L.
        • Patel D.
        • Lampe P.D.
        • Veenstra R.D.
        Histone deacetylase inhibition reduces cardiac connexin43 expression and gap junction communication.
        Front. Pharmacol. 2013; 4: 44
        • Solan J.L.
        • Fry M.D.
        • TenBroek E.M.
        • Lampe P.D.
        Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation.
        J. Cell Sci. 2003; 116: 2203-2211
        • Chung T.H.
        • Wang S.M.
        • Wu J.C.
        17beta-estradiol reduces the effect of metabolic inhibition on gap junction intercellular communication in rat cardiomyocytes via the estrogen receptor.
        J. Mol. Cell. Cardiol. 2004; 37: 1013-1022
        • Patel P.M.
        • Plotnikov A.
        • Kanagaratnam P.
        • Shvilkin A.
        • Sheehan C.T.
        • Xiong W.
        • et al.
        Altering ventricular activation remodels gap junction distribution in canine heart.
        J. Cardiovasc. Electrophysiol. 2001; 12: 570-577
        • Zhong J.Q.
        • Zhang W.
        • Gao H.
        • Li Y.
        • Zhong M.
        • Li D.
        • et al.
        Changes in connexin 43, metalloproteinase and tissue inhibitor of metalloproteinase during tachycardia-induced cardiomyopathy in dogs.
        Eur. J. Heart Fail. 2007; 9: 23-29
        • Yang Z.
        • Shen W.
        • Rottman J.N.
        • Wikswo J.P.
        • Murray K.T.
        Rapid stimulation causes electrical remodeling in cultured atrial myocytes.
        J. Mol. Cell. Cardiol. 2005; 38: 299-308
        • Peng S.
        • Lacerda A.E.
        • Kirsch G.E.
        • Brown A.M.
        • Bruening-Wright A.
        The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes.
        J. Pharmacol. Toxicol. Methods. 2010; 61: 277-286
        • Dedkova E.N.
        • Blatter L.A.
        Role of beta-hydroxybutyrate, its polymer poly-beta-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease.
        Front. Physiol. 2014; 5: 260
        • Shimazu T.
        • Hirschey M.D.
        • Newman J.
        • He W.
        • Shirakawa K.
        • Le Moan N.
        • et al.
        Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor.
        Science. 2013; 339: 211-214
        • Carnes C.A.
        • Chung M.K.
        • Nakayama T.
        • Nakayama H.
        • Baliga R.S.
        • Piao S.
        • et al.
        Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation.
        Circ. Res. 2001; 89: E32-E38
        • Schild L.
        • Bukowska A.
        • Gardemann A.
        • Polczyk P.
        • Keilhoff G.
        • Tager M.
        • et al.
        Rapid pacing of embryoid bodies impairs mitochondrial ATP synthesis by a calcium-dependent mechanism — a model of in vitro differentiated cardiomyocytes to study molecular effects of tachycardia.
        Biochim. Biophys. Acta. 1762; 2006: 608-615
        • Solan J.L.
        • Lampe P.D.
        Key connexin 43 phosphorylation events regulate the gap junction life cycle.
        J. Membr. Biol. 2007; 217: 35-41
        • Kuramochi Y.
        • Guo X.
        • Sawyer D.B.
        • Lim C.C.
        Rapid electrical stimulation induces early activation of kinase signal transduction pathways and apoptosis in adult rat ventricular myocytes.
        Exp. Physiol. 2006; 91: 773-780
        • Mateo F.
        • Vidal-Laliena M.
        • Canela N.
        • Busino L.
        • Martinez-Balbas M.A.
        • Pagano M.
        • et al.
        Degradation of cyclin A is regulated by acetylation.
        Oncogene. 2009; 28: 2654-2666
        • van Loosdregt J.
        • Vercoulen Y.
        • Guichelaar T.
        • Gent Y.Y.
        • Beekman J.M.
        • van Beekum O.
        • et al.
        Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization.
        Blood. 2010; 115: 965-974
        • Qian M.X.
        • Pang Y.
        • Liu C.H.
        • Haratake K.
        • Du B.Y.
        • Ji D.Y.
        • et al.
        Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis.
        Cell. 2013; 153: 1012-1024
        • Wang D.
        • Fang C.
        • Zong N.C.
        • Liem D.A.
        • Cadeiras M.
        • Scruggs S.B.
        • et al.
        Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human.
        Mol. Cell. Proteomics. 2013; 12: 3793-3802
        • Djakovic S.N.
        • Schwarz L.A.
        • Barylko B.
        • DeMartino G.N.
        • Patrick G.N.
        Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.
        J. Biol. Chem. 2009; 284: 26655-26665
        • Nayak M.K.
        • Kumar K.
        • Dash D.
        Regulation of proteasome activity in activated human platelets.
        Cell Calcium. 2011; 49: 226-232
        • Park J.Y.
        • Jang S.Y.
        • Shin Y.K.
        • Suh D.J.
        • Park H.T.
        Calcium-dependent proteasome activation is required for axonal neurofilament degradation.
        Neural Regen. Res. 2013; 8: 3401-3409
        • Inoue N.
        • Ohkusa T.
        • Nao T.
        • Lee J.K.
        • Matsumoto T.
        • Hisamatsu Y.
        • et al.
        Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist.
        J. Am. Coll. Cardiol. 2004; 44: 914-922
        • Tandon N.
        • Marsano A.
        • Maidhof R.
        • Wan L.
        • Park H.
        • Vunjak-Novakovic G.
        Optimization of electrical stimulation parameters for cardiac tissue engineering.
        J. Tissue Eng. Regen. Med. 2011; 5: e115-e125
        • Barash Y.
        • Dvir T.
        • Tandeitnik P.
        • Ruvinov E.
        • Guterman H.
        • Cohen S.
        Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
        Tissue Eng Part C Methods. 2010; 16: 1417-1426
        • Miragoli M.
        • Kadir S.H.
        • Sheppard M.N.
        • Salvarani N.
        • Virta M.
        • Wells S.
        • et al.
        A protective antiarrhythmic role of ursodeoxycholic acid in an in vitro rat model of the cholestatic fetal heart.
        Hepatology. 2011; 54: 1282-1292
        • Duverger J.E.
        • Boudreau-Béland J.
        • Duc Le M.
        • Comtois P.
        Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells.
        New J. Phys. 2014; 16: 113046
        • Bien H.
        • Yin L.
        • Entcheva E.
        Calcium instabilities in mammalian cardiomyocyte networks.
        Biophys. J. 2006; 90: 2628-2640
        • Epstein A.E.
        • Kay G.N.
        • Plumb V.J.
        • Dailey S.M.
        • Anderson P.G.
        Gross and microscopic pathological changes associated with nonthoracotomy implantable defibrillator leads.
        Circulation. 1998; 98: 1517-1524
        • Mase H.
        • Tamura K.
        • Hiromoto A.
        • Hotta M.
        • Hotomi S.
        • Togashi M.
        • et al.
        Histopathological study of tissue reaction to pacemaker electrodes implanted in the endocardium.
        J. Nippon Med. Sch. 2005; 72: 52-59
        • Kontogeorgis A.
        • Kaba R.A.
        • Kang E.
        • Feig J.E.
        • Gupta P.P.
        • Ponzio M.
        • et al.
        Short-term pacing in the mouse alters cardiac expression of connexin43.
        BMC Physiol. 2008; 8 (6793-8-8): 8