CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia


      • CB1R inhibition attenuated LVH and Akt-mediated cardiac fibrosis in a CKD mice model.
      • The uremic toxin indoxyl sulfate stimulated CB1R and fibrotic marker expression.
      • CB1R inhibition caused anti-fibrotic effects via Akt signal modulation.
      • Drugs targeting CB1R may have therapeutic potential for uremic cardiomyopathy.


      Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis—2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy. Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling. The heart size and myocardial fibrosis were evaluated by echocardiography and immunohistochemical staining, respectively, in 5/6 nephrectomy chronic kidney disease (CKD) mice treated with a CB1R antagonist. CB1R and fibrosis marker expression levels were determined by immunoblotting in H9c2 cells exposed to the uremic toxin indoxyl sulfate (IS), with an organic anion transporter 1 inhibitor or a CB1R antagonist or agonist. Akt phosphorylation was also assessed to examine the signaling pathways downstream of CB1R activation induced by IS in H9c2 cells. CKD mice exhibited marked left ventricular hypertrophy and myocardial fibrosis, which were reversed by treatment with the CB1R antagonist. CB1R, collagen I, transforming growth factor (TGF)-β, and α-smooth muscle actin (SMA) expression showed time- and dose-dependent upregulation in H9c2 cells treated with IS. The inhibition of CB1R by either CB1R antagonist or small interfering RNA-mediated knockdown attenuated the expression of collagen I, TGF-β, and α-SMA in IS-treated H9c2 cells, while Akt phosphorylation was enhanced by CB1R agonist and abrogated by CB1R antagonist in these cells. In summary, we conclude that CB1R blockade attenuates LVH and Akt-mediated cardiac fibrosis in a CKD mouse model. Uremic toxin IS stimulates the expression of CB1R and fibrotic markers and CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts. Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.


      α-SMA (α-smooth muscle actin), ANP (atrial natriuretic peptide), β-MHC (myosin heavy chain beta), BNP (brain natriuretic peptide), BW (body weight), CB1R (cannabinoid receptor type 1), CKD (chronic kidney disease), CMR (cardiac magnetic resonance), CVD (cardiovascular disease), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), HW (heart weight), IL (interleukin), IS (indoxyl sulfate), LVH (left ventricular hypertrophy), MAPK (mitogen-activated protein kinase), NF-κB (nuclear factor κB), PI3K (phosphoinositide-3-kinase protein kinase), PARP (poly ADP-ribose polymerase), PNx (partial nephrectomy), PtdIns (phosphatidylinositol), siRNA (short interfering RNA), TGF (transforming growth factor)


      To read this article in full you will need to make a payment


        • Briet M.
        • Boutouyrie P.
        • Laurent S.
        • London G.M.
        Arterial stiffness and pulse pressure in CKD and ESRD.
        Kidney Int. 2012; 82: 388-400
        • Foley R.N.
        • Collins A.J.
        End-stage renal disease in the United States: an update from the United Stated Renal Data System.
        J Am Soc Nephrol. 2007; 18: 2644-2648
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Smith G.L.
        • Lichtman J.H.
        • Bracken M.B.
        • Shlipak M.G.
        • Phillips C.O.
        • DiCapua P.
        • et al.
        Renal impairment and outcomes in heart failure: systemic reviews and meta-analysis.
        J Am Coll Cardiol. 2006; 47: 1987-1996
        • Amann K.
        • Tyralla K.
        • Gross M.L.
        • Schwarz U.
        • Tornig J.
        • Haas C.S.
        • et al.
        Cardiomyocyte loss in experimental renal failure: prevention by ramipril.
        Kidney Int. 2003; 63: 1708-1713
        • Amann K.
        • Kronenberg G.
        • Gehlen F.
        • Wessels S.
        • Orth S.
        • Munter K.
        • et al.
        Cardiac remodelling in experimental renal failure—an immunohistochemical study.
        Nephrol Dial Transplant. 1998; 13: 1958-1966
        • Cohn J.N.
        • Ferrari R.
        • Sharpe N.
        Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an international Forum on cardiac remodeling.
        J Am Coll Cardiol. 2000; 35: 568-582
        • Nitta K.
        • Iimuro S.
        • Imai E.
        • Matsuo S.
        • Makino H.
        • Akizawa T.
        • et al.
        Risk factors for increased left ventricular hypertrophy in patients with chronic kidney disease.
        Clin Exp Nephrol. 2013; 17: 730-742
        • Amann K.
        • Ritz E.
        • Wiest G.
        • Klaus G.
        • Mall G.
        A role of parathyroid hormone for the activation of cardiac fibroblasts in uremia.
        J Am Soc Nephrol. 1994; 4: 1814-1819
        • Scheid M.P.
        • Woodgett J.R.
        PKB/AKT: functional insights from genetic models.
        Nat Rev Mol Cell Biol. 2001; 2: 760-768
        • Scheid M.P.
        • Woodgett J.R.
        Unravelling the activation mechanisms of protein kinase B/Akt.
        FEBS Lett. 2003; 546: 108-112
        • Vanhaesebroeck B.
        • Alessi D.R.
        The P13K–PDK1 connection: more than just a road to PKB.
        Biochem J. 2000; 346: 561-576
        • Leevers S.J.
        Growth control: invertebrate insulin surprises!.
        Curr Biol. 2001; 11: R209-R212
        • Leevers S.J.
        • Weinkove D.
        • MacDougall L.K.
        • Hafen E.
        • Waterfield M.D.
        The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth.
        EMBO J. 1996; 15: 6584-6594
        • Shioi T.
        • McMullen J.R.
        • Kang P.M.
        • Douglas P.S.
        • Obata T.
        • Franke T.F.
        • et al.
        Akt/protein kinase B promotes organ growth in transgenic mice.
        Mol Cell Biol. 2002; 22: 2799-2809
        • Condorelli G.
        • Drusco A.
        • Stassi G.
        • Bellacosa A.
        • Roncarati R.
        • Iaccarino G.
        • et al.
        Akt induces myocardial contractility and cell size in vivo in transgenic mice.
        Proc Natl Acad Sci U S A. 2002; 99: 12333-12338
        • Matsui T.
        • Li L.
        • Wu J.C.
        • Cook S.A.
        • Nagoshi T.
        • Picard M.H.
        • et al.
        Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart.
        J Biol Chem. 2002; 277: 22901-22906
        • Everett A.D.
        • Stoops T.D.
        • Nairn A.C.
        • Brautigan D.
        Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes.
        Am J Physiol. 2001; 281: H161-H167
        • Semple D.
        • Smith K.
        • Bhandari S.
        • Seymour A.M.
        Uremic cardiomyopathy and insulin resistance: a critical role for Akt?.
        J Am Soc Nephrol. 2011; 22: 207-215
        • Pacher P.
        • Bátkai S.
        • Kunos G.
        The endocannabinoid system as an emerging target of pharmacotherapy.
        Pharmacol Rev. 2006; 58: 389-462
        • Engeli S.
        Dysregulation of the endocannabinoid system in obesity.
        J Neuroendocrinol. 2008; 20: S110-S115
        • Di Marzo V.
        The endocannabinoid system in obesity and type 2 diabetes.
        Diabetologia. 2008; 51: 1356-1367
        • Engeli S.
        • Böhnke J.
        • Feldpausch M.
        • Gorzelniak K.
        • Janke J.
        • Bátkai S.
        • et al.
        Activation of the peripheral endocannabinoid system in human obesity.
        Diabetes. 2005; 54: 2838-2843
        • Silvestri C.
        • Ligresti A.
        • Di Marzo V.
        Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle.
        Rev Endocr Metab Disord. 2011; 12: 153-162
        • Mukhopadhyay P.
        • Bátkai S.
        • Rajesh M.
        • Czifra N.
        • Harvey-White J.
        • Hasko G.
        • et al.
        Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity.
        J Am Coll Cardiol. 2007; 50: 528-536
        • Mukhopadhyay P.
        • Rajesh M.
        • Bátkai S.
        • Patel V.
        • Kashiwaya Y.
        • Liaudel L.
        • et al.
        CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicininduced cardiomyopathy and in human cardiomyocytes.
        Cardiovasc Res. 2010; 85: 773-784
        • Mukhopadhyay P.
        • Horváth B.
        • Rajesh M.
        • Matsumoto S.
        • Saito K.
        • Bátkai S.
        • et al.
        Fatty acid amide hydrolase is a key regulator of endocannabinoid-induced myocardial tissue injury.
        Free Radic Biol Med. 2011; 50: 179-195
        • Rajesh M.
        • Bátkai S.
        • Kechrid M.
        • Mukhopadhyay P.
        • Lee W.S.
        • Horváth B.
        • et al.
        Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy.
        Diabetes. 2012; 61: 716-727
        • Siedlecki A.M.
        • Jin X.
        • Muslin A.J.
        Uremic cardiac hypertrophy is reversed by rapamycin but not by lowering of blood pressure.
        Kidney Int. 2009; 75: 800-808
        • Yang H.C.
        • Zuo Y.
        • Fogo A.B.
        Models of chronic kidney disease.
        Drug Discov Dis Models. 2010; 7: 13-19
        • Kennedy D.J.
        • Elkareh J.
        • Shidyak A.
        • Shapiro A.P.
        • Smaili S.
        • Mutgi K.
        • et al.
        Partial nephrectomy as a model for uremic cardiomyopathy in the mouse.
        Am J Physiol Renal Physiol. 2008; 294: F450-F454
        • Berti G.
        • Fossati P.
        • Tarenghi G.
        • Musitelli C.
        • Melzi d'Eril G.V.
        Enzymatic colorimetric method for the determination of inorganic phosphorus in serum and urine.
        J Clin Chem Clin Biochem. 1988; 26: 399-404
        • Cheng T.H.
        • Shih N.L.
        • Chen S.Y.
        • Wang D.L.
        • Chen J.J.
        Reactive oxygen species modulate endothelin-I_induced c-fos gene expression in cardiomyocytes.
        Cardiovasc Res. 1999; 41: 654-662
        • Rudolph A.
        • Abdel-Aty H.
        • Bohl S.
        • Boye P.
        • Zagrosek A.
        • Dietz R.
        • et al.
        Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy: relation to remodeling.
        J Am Coll Cardiol. 2009; 53: 284-291
        • Mark P.B.
        • Johnston N.
        • Groenning B.A.
        • Foster J.E.
        • Blyth K.G.
        • Martin T.N.
        • et al.
        Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging.
        Kidney Int. 2006; 69: 1839-1845
        • Edwards N.C.
        • Ferro C.J.
        • Townend J.N.
        • Steeds R.P.
        Aortic distensibility and arterial–ventricular coupling in early chronic kidney disease: a pattern resembling heart failure with preserved ejection fraction.
        Heart. 2008; 94: 1038-1043
        • Tyralla K.
        • Amann K.
        Cardiovascular changes in renal failure.
        Blood Purif. 2002; 20: 462-465
        • Tyralla K.
        • Amann K.
        Morphology of the heart and arteries in renal failure.
        Kidney Int. 2003; 63: S80-S83
        • Wynn T.A.
        Cellular and molecular mechanisms of fibrosis.
        J Pathol. 2008; 214: 199-210
        • Lijnen P.J.
        • Petrov V.V.
        • Fagard R.H.
        Induction of cardiac fibrosis by transforming growth factor-beta(1).
        Mol Genet Metab. 2000; 71: 418-435
        • Lijnen P.
        • Petrov V.
        Induction of cardiac fibrosis by aldosterone.
        J Mol Cell Cardiol. 2000; 32: 865-879
        • Pohlers D.
        • Brenmoehl J.
        • Loffler I.
        • Muller C.K.
        • Leipner C.
        • Schultze-Mosqau S.
        • et al.
        TGF-β and fibrosis in different organs-molecular pathway imprints.
        Biochim Biophys Acta. 2009; 1792: 746-756
        • London G.M.
        Cardiovascular disease in chronic renal failure: pathophysiologic aspects.
        Semin Dial. 2003; 16: 85-94
        • Alhaj E.
        • Alhaj N.
        • Rahman I.
        • Niazi T.O.
        • Berkowitz R.
        • Klapholz M.
        Uremic cardiomyopathy: an underdiagnosed disease.
        Congest Heart Fail. 2013; 19: E40-E45
        • Lekawanvijit S.
        • Adrahtas A.
        • Kelly D.J.
        • Kompa A.R.
        • Wang B.H.
        • Krum H.
        Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?.
        Eur Heart J. 2010; 31: 1771-1779
        • Lekawanvijit S.
        • Kompa A.R.
        • Manabe M.
        • Wang B.H.
        • Langham R.G.
        • Nishijima F.
        • et al.
        Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate.
        PLoS One. 2012; 7: e41281
        • Barreto F.C.
        • Barreto D.V.
        • Liabeuf S.
        • Meert N.
        • Glorieux G.
        • Temmar M.
        • et al.
        Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.
        Clin J Am Soc Nephrol. 2009; 4: 1551-1558
        • Shimazu S.
        • Hirashiki A.
        • Okumura T.
        • Yamada T.
        • Okamoto R.
        • Shinoda N.
        • et al.
        Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy.
        Circ J. 2013; 77: 390-396
        • Walsh K.
        Akt signaling and growth of the heart.
        Circulation. 2006; 113: 2032-2034
        • DeBosch B.
        • Sambandam N.
        • Weinheimer C.
        • Courtois M.
        • Muslin A.J.
        Akt2 regulates cardiac metabolism and cardiomyocyte survival.
        J Biol Chem. 2006; 281: 32841-32851
        • Lin C.Y.
        • Hsu S.C.
        • Lee H.S.
        • Lin S.H.
        • Tsai C.S.
        • Huang S.M.
        • et al.
        Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.
        J Vasc Surg. 2013; 57: 475-485
        • Hsu Y.J.
        • Hsu S.C.
        • Huang S.M.
        • Lee H.S.
        • Lin S.H.
        • Tsai C.S.
        • et al.
        Hyperphosphatemia induces protective autophagy in endothelial cells through the inhibition of Akt/mTOR signaling.
        J Vasc Surg. 2015; 62: 210-221
        • Hescheler J.
        • Meyer R.
        • Plant S.
        • Plant S.
        • Krautwurst D.
        • Rosenthal W.
        • et al.
        Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart.
        Circ Res. 1991; 69: 1476-1486
        • Bugyei-Twum A.
        • Advani A.
        • Advani S.L.
        • Zhang Y.
        • Thai K.
        • Kelly D.J.
        • et al.
        High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy.
        Cardiovasc Diabetol. 2014; 13: 89
        • Zong J.
        • Zhang D.P.
        • Zhou H.
        • Bian Z.Y.
        • Deng W.
        • Dai J.
        • et al.
        Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling.
        J Cell Biochem. 2013; 114: 1058-1065
        • Bai Y.
        • Cui W.
        • Xin Y.
        • Miao X.
        • Barati M.T.
        • Zhang C.
        • et al.
        Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation.
        J Mol Cell Cardiol. 2013; 57: 82-95
        • Singla D.K.
        • Singla R.D.
        • Lamm S.
        • Glass C.
        TGF-β2 treatment enhances cytoprotective factors released from embryonic stem cells and inhibits apoptosis in infarcted myocardium.
        Am J Physiol Heart Circ Physiol. 2011; 300: H1442-H1450
        • Ghiggeri G.M.
        • Oleggini R.
        • Musante L.
        • Caridi G.
        • Gusmano R.
        • Ravazzolo R.
        A DNA element in the alpha1 type III collagen promoter mediates a stimulatory response by angiotensin II.
        Kidney Int. 2000; 58: 537-548