Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction


      Intravascular transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is a promising therapeutic approach after acute myocardial infarction. Efficacy and targeting of myocardial cell engraftment are crucial variables determining the therapeutic value of MSC transplantation. Highly focused ultrasound-mediated stimulation of microbubbles (hf-UMS) allows locoregional pre-treatment of target tissue. In a “proof of concept” study, we investigated augmentation of site-targeted MSC engraftment with hf-UMS. We further evaluated the ability of transplanted MSCs to transmigrate across the endothelial barrier into non-ischemic and post-ischemic myocardium in vivo. After acute myocardial ischemia and reperfusion, rats received hf-UMS focused on the anterior left-ventricular wall followed by intravascular transplantation of MSCs. Global and regional myocardial engraftment of MSCs was quantified by means of confocal laser-scanning microscopy; endothelial adhesion, transendothelial migration and invasion of basement membrane were distinguished. Targeted myocardium exhibited higher amount of transplanted MSCs vs. non-targeted tissue. The rate of transendothelial migration was lowest in non-ischemic (41.2±2%) compared to post-ischemic myocardium (53±5.7%, p<0.01). Hf-UMS significantly increased the transmigration rate to 50±6.1% (p<0.05) and 64±8.9% (p<0.05), respectively. Additionally, myocardial segments exposed to hf-UMS revealed an onset of protease activity. Signs of undesired biological effects, such as induction of apoptosis and/or myocardial necrosis were not observed. This study provides the first evidence of the migration of MSCs across the myocardial endothelium in vivo. Hf-UMS not only improves myocardial engraftment of MSCs but also allows locoregional targeting of post-ischemic myocardium.


      To read this article in full you will need to make a payment


        • Assmus B.
        • Schachinger V.
        • Teupe C.
        • Britten M.
        • Lehmann R.
        • Dobert N.
        • et al.
        Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).
        Circulation. 2002; 106: 3009-3017
        • Gnecchi M.
        • He H.
        • Liang O.D.
        • Melo L.G.
        • Morello F.
        • Mu H.
        • et al.
        Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells.
        Nat. Med. 2005; 11: 367-368
        • Barbash I.M.
        • Chouraqui P.
        • Baron J.
        • Feinberg M.S.
        • Etzion S.
        • Tessone A.
        • et al.
        Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution.
        Circulation. 2003; 108: 863-868
        • Hofmann M.
        • Wollert K.C.
        • Meyer G.P.
        • Menke A.
        • Arseniev L.
        • Hertenstein B.
        • et al.
        Monitoring of bone marrow cell homing into the infarcted human myocardium.
        Circulation. 2005; 111: 2198-2202
        • Schmidt A.
        • Ladage D.
        • Steingen C.
        • Brixius K.
        • Schinkothe T.
        • Klinz F.J.
        • et al.
        Mesenchymal stem cells transmigrate over the endothelial barrier.
        Eur. J. Cell Biol. 2006; 85: 1179-1188
        • Steingen C.
        • Brenig F.
        • Baumgartner L.
        • Schmidt J.
        • Schmidt A.
        • Bloch W.
        Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells.
        J. Mol. Cell. Cardiol. 2008; 44: 1072-1084
        • Chavakis E.
        • Urbich C.
        • Dimmeler S.
        Homing and engraftment of progenitor cells: a prerequisite for cell therapy.
        J. Mol. Cell. Cardiol. 2008; 45: 514-522
        • Song J.
        • Qi M.
        • Kaul S.
        • Price R.J.
        Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound.
        Circulation. 2002; 106: 1550-1555
        • Imada T.
        • Tatsumi T.
        • Mori Y.
        • Nishiue T.
        • Yoshida M.
        • Masaki H.
        • et al.
        Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 2128-2134
        • Zen K.
        • Okigaki M.
        • Hosokawa Y.
        • Adachi Y.
        • Nozawa Y.
        • Takamiya M.
        • et al.
        Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response.
        J. Mol. Cell. Cardiol. 2006; 40: 799-809
        • Lohmaier S.
        • Ghanem A.
        • Veltmann C.
        • Sommer T.
        • Bruce M.
        • Tiemann K.
        In vitro and in vivo studies on continuous echo-contrast application strategies using SonoVue in a newly developed rotating pump setup.
        Ultrasound Med. Biol. 2004; 30: 1145-1151
        • Nossuli T.O.
        • Lakshminarayanan V.
        • Baumgarten G.
        • Taffet G.E.
        • Ballantyne C.M.
        • Michael L.H.
        • et al.
        A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies.
        Am. J. Physiol, Heart Circ. Physiol. 2000; 278: H1049-H1055
        • Kim S.C.
        • Ghanem A.
        • Stapel H.
        • Tiemann K.
        • Knuefermann P.
        • Hoeft A.
        • et al.
        Toll-like receptor 4 deficiency: smaller infarcts, but no gain in function.
        BMC Physiol. 2007; 7: 5
        • Ghanem A.
        • Troatz C.
        • Elhafi N.
        • Dewald O.
        • Heeschen C.
        • Nickenig N.
        • et al.
        Quantitation of myocardial borderzone using reconstructive three-dimensional echocardiography after chronic infarction in rats — incremental value of low-dose dobutamine.
        Ultrasound Med. Biol. 2008; 34: 559-566
        • Agrawal S.
        • Anderson P.
        • Durbeej M.
        • van R.N.
        • Ivars F.
        • Opdenakker G.
        • et al.
        Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis.
        J. Exp. Med. 2006; 203: 1007-1019
        • Oh L.Y.
        • Larsen P.H.
        • Krekoski C.A.
        • Edwards D.R.
        • Donovan F.
        • Werb Z.
        • et al.
        Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes.
        J. Neurosci. 1999; 19: 8464-8475
        • Miller D.L.
        • Driscoll E.M.
        • Dou C.
        • Armstrong W.F.
        • Lucchesi B.R.
        Microvascular permeabilization and cardiomyocyte injury provoked by myocardial contrast echocardiography in a canine model.
        J. Am. Coll. Cardiol. 2006; 47: 1464-1468
        • Miller D.L.
        • Li P.
        • Dou C.
        • Armstrong W.F.
        • Gordon D.
        Evans blue staining of cardiomyocytes induced by myocardial contrast echocardiography in rats: evidence for necrosis instead of apoptosis.
        Ultrasound Med. Biol. 2007; 33: 1988-1996
        • Miller D.L.
        • Gies R.A.
        The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffects in mouse intestine.
        Ultrasound Med. Biol. 2000; 26: 307-313
        • de Jong N.
        • Emmer M.
        • Chin C.T.
        • Bouakaz A.
        • Mastik F.
        • Lohse D.
        • et al.
        “Compression-only” behavior of phospholipid-coated contrast bubbles.
        Ultrasound Med. Biol. 2007; 33: 653-656
        • Segers V.F.
        • Van R.I.
        • Andries L.J.
        • Lemmens K.
        • Demolder M.J.
        • De Becker A.J.
        • et al.
        Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms.
        Am. J. Physiol, Heart Circ. Physiol. 2006; 290: H1370-H1377
        • Reil J.C.
        • Gilles S.
        • Zahler S.
        • Brandl A.
        • Drexler H.
        • Hultner L.
        • et al.
        Insights from knock-out models concerning postischemic release of TNFalpha from isolated mouse hearts.
        J. Mol. Cell. Cardiol. 2007; 42: 133-141
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • Jaiswal R.K.
        • Douglas R.
        • Mosca J.D.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Templin C.
        • Kotlarz D.
        • Marquart F.
        • Faulhaber J.
        • Brendecke V.
        • Schaefer A.
        • et al.
        Transcoronary delivery of bone marrow cells to the infarcted murine myocardium: feasibility, cellular kinetics, and improvement in cardiac function.
        Basic Res. Cardiol. 2006; 101: 301-310
        • Miller D.L.
        • Li P.
        • Dou C.
        • Gordon D.
        • Edwards C.A.
        • Armstrong W.F.
        Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.
        Radiology. 2005; 237: 137-143
      1. J. Alter, C.A. Sennoga, D.M. Lopes, R.J. Eckersley, D.J. Wells, Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer. Ultrasound Med Biol 2009;35(6):976–84.